Comput Econ (2013) 41:1-9
DOI 10.1007/s10614-011-9309-4

Response Surface Estimates of the Cross-Sectionally
Augmented IPS Tests for Panel Unit Roots

Jests Otero - Jeremy Smith

Accepted: 12 December 2011 / Published online: 21 December 2011
© Springer Science+Business Media, LLC. 2011

Abstract This paper estimates response surface coefficients for a large range of
quantiles of the cross-sectionally augmented IPS (CIPS) test of Pesaran (2007), for
different specifications of the deterministic components. An Excel programme is avail-
able to calculate the P value associated with a CIPS test statistic.
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1 Introduction

During the last decade or so, the problem of testing for the presence of unit roots in
panels of data has received a great deal of attention. Among the tests available in the
literature, perhaps the one proposed by Im et al. (2003), commonly referred to as the
IPS test, has proved to be the most popular. This panel unit root test, based on averaging
individual augmented Dickey and Fuller (1979) (ADF) statistics, combines informa-
tion from the time-series dimension with that from the cross-section dimension, such
that fewer time observations are required for the test to have power.
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A critical assumption underlying the IPS test is that of cross sectional indepen-
dence. However, failing to account for cross-sectional dependence leads to over-
rejection of the test statistic, the magnitude of which increases as the strength of the
cross-sectional dependence increases; see e.g., Strauss and Yigit (2003) and Pesaran
(2007). To overcome this deficiency, Pesaran (2007) suggests augmenting the standard
ADF regressions with the cross section averages of lagged levels and first-differences
of the individual series in the panel; the resulting test statistic is referred to as the
cross-sectionally augmented version of the IPS test, denoted as CIPS.

Both Im et al. (2003) and Pesaran (2007) tabulate critical values for the most com-
monly used specifications of the deterministic components in the test regressions,
namely no intercept and no trend (Case I); intercept only (Case II); and intercept and
trend (Case III). The tabulated critical values are based on 50,000 replications, but are
only reported for a limited range of time observations, 7, and a limited number of
cross-sectional units, N, in the panel.

In this paper, we undertake an extensive set of Monte Carlo simulations that are
summarised by means of response surface regressions, from which critical values of
the Pesaran (2007) panel unit root test can be calculated for different values of N and
T, and different specifications of deterministic components. Our particular interest is
on the CIPS test, rather than on the IPS test, since it is applicable to the more realistic
scenario in which there is cross sectional dependency among the individuals in the
panel. Response surfaces have been used, among others, by MacKinnon (1991) to cal-
culate critical values of the Dickey and Fuller (1979) and Engle and Granger (1987)
unit root and cointegration tests, respectively; Cheung and Lai (1993) for the Dickey-
Fuller tests allowing for the effect of lag order; Sephton (1995) for the Kwiatkowski
et al. (1992) univariate stationarity tests; Mackinnon et al. (1999) for the Johansen
(1988) likelihood ratio tests for cointegration; and Harvey and Van Dijk (2006) for the
Hylleberg et al. (1990) seasonal unit root tests.

The plan of the paper is as follows. In Section 2 we provide a brief overview of both
the IPS and CIPS tests. Section 3 then discusses the Monte Carlo simulation design
and the response surface results. Section 4 concludes.

2 TIPS and CIPS Panel Unit Root Tests

For Case III, that is including cross-section specific intercept and trend, the IPS test
is based on individual ADF regressions:

pi
Ayis = ai + bit + ¢iyi—1 + D dir DYii—r + Eit, D

r=1

wherei = 1, ..., N cross section units, and ¢t = 1, ..., T time observations (for Case
I: a; = b; = 0; for Case II: b; = 0). In this setting the null hypothesis to test the
presence of a unit root becomes Hy : ¢; = 0 for all i, against the alternative that at
least one of the individual series in the panel is stationary, that is H; : ¢; < O for at
least one i. The IPS test averages the ADF statistics obtained in Eq. 1 across the N
cross-sectional units of the panel, that is:
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N

IPS = (N)~! ZADFi, )

i=1

where ADF; is the augmented Dickey and Fuller statistic based on the regression ¢
statistic for Hy : ¢; = 0 in Eq. 1. Im et al. (2003) show that after a suitable standardi-
sation, their statistic follows a standard normal distribution. They compute the mean
and variance required to standardise the statistic in Eq. 2 via Monte Carlo simula-
tions, for different values of 7 and p;, and for different combinations of deterministic
components. Im et al. further show that when the underlying error term ¢;; follows a
normal distribution, the required condition for the second moment of the statistic in
Eq. 2 to exist is 7 > 5 in the model with intercept and no trend, and 7 > 6 in the
model with intercept and trend.

An important assumption underlying the IPS test is that of cross sectional inde-
pendence across the individual time series in the panel, as the test suffers from size
distortions in the presence of cross section dependence. In order to overcome this,
Pesaran (2007) augments Eq. 1 with the cross section averages of lagged level and
lagged first-differences of the individual series in the panel. Thus, the test of the unit
root hypothesis would be based on the following p** order cross-sectionally augmented
Dickey and Fuller regressions:

p P
Ayis = ai +bit + ciyio-1+ D dir Aoy + fiFio1 + D 8ir AV + €0, (3)
r=1 r=0

where y; is the cross section mean of y;;, defined as y; = (N )_1 ZZN= 1 yit. The cross-
sectionally augmented version of the IPS test statistic (CIPS) is:

N
CIPS = (N)! Z CADF;, 4)
i=1

where CADF; is the cross-sectionally augmented Dickey and Fuller ¢ statistic for
testing Hy : ¢; = 0 in Eq. 3. Pesaran (2007) also considers a truncated version of the
C ADF; statistic, denoted C ADFi*, that avoids the problem of moment calculation.
The truncated version of the statistic is given by:

CADFf = CADF;, if —K, <CADF; <K
CADF* = —K; if CADF; < —K,
CADFF = K, if CADF; > K>

where K 1 and K2 are posmve constants sufficiently large so that Pr (—Ky < CADF;
al approximation of CA D F;, Pesaran (2007)
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Case I: No intercept, no trend: K| =6.12; K, =4.16
Case II: Intercept, no trend: K =6.19; K, =2.61

Case III: Intercept and trend: Ki=642; K,=1.70

The corresponding truncated version of the CIPS statistic, denoted CIPS*, is com-
puted as the simple average of the individual CAD F;* statistics, that is:

N
CIPS* = (N)~! z CADF}. (5)

i=1

Critical values for both the CIPS and CIPS* test statistics are tabulated by Pesaran
(2007) for several values of 7 and N, and according to the deterministic components
included in the cross-sectionally augmented Dickey and Fuller regression given in Eq.
3. Pesaran (2007) shows that the distribution of both the CIPS and CIPS* test statistics
are non-standard even for sufficiently large N. This result is in sharp contrast to that
obtained for the IPS test under the assumption of cross section independence which,
after a suitable standardisation, was shown to be normally distributed for N sufficiently
large. Pesaran also observes that it is only for very small values of 7T that the finite
sample distributions of CIPS and CIPS* differ, being practically indistinguishable for
T > 20. In this paper we focus on the CIPS test statistic.

3 Monte Carlo Design and Results

The data generating process (DGP) used in the Monte Carlo simulation follows closely
that used by Pesaran (2007), which enables us to determine how well our results com-
pare with those reported in that paper. Thus, we assume that y;; is generated by a
first-order autoregressive process:

Yir = Yiji—1 + &ir, (6)

wherei =1,..., N,t=1,..., T +1,andg;; ~ N (O, Uizr)’ where (rizt = 1 without
loss of generality. We set N = 2(1)8, 10(2)20, 25 (5) 50, 60 (10) 100, 120 (20) 160,
200, and T = 10, 11, 12 (2) 20, 25 (5) 50, 60 (10) 100, 120 (20) 200, 250, 300 (100)
800, where e.g. N = 2 (1) 8 means that we take all samples from N =2upto N = 8§
going up in steps of 1, and so on (the same notation is also used for the sample size,
T, and later on when listing significance levels, /). Following Pesaran (2007), for
Case I the initial value of y;; is set equal to zero, while for Cases II and III a burn-in
period of 100 observations is used. Each experiment consists of 50,000 replications
and then, similar to Harvey and Van Dijk (2006), we repeat each experiment 25 times
to allow for sampling variability, implying that we have 25 critical values generated
from each of the 50,000 replications. According to MacKinnon (1996) , conducting
multiple experiments for the same sample size (and number of individuals) provides a
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simple way to measure experimental randomness. Although the choice for repeating
each experiment (25 times in our case) is based on computational costs, it appears that
numerical accuracy is adequate. For instance, our estimate of the 1% critical value for
the CIPS test in Case II (IIT) for N = 20 and T = 30 varies from -2.381 (-2.894)
to -2.371 (-2.878) with a mean of -2.377 (-2.884) and standard deviation of 0.0028
(0.0038), over the 25 different repetitions.

Turning to the specifications of the response surfaces, we follow MacKinnon (1991)
by running regressions of the critical values, for a given significance level /, on an
intercept and functions of (%) ( ) and their interaction ( NT) The chosen functional

form includes powers of order 0.5, 1, 2, and 3 of the terms (%) , (%) and ( ) It
is also worth noting that including powers of order 1.5 and 2.5 and experimenting
with higher powered terms, in general, yielded coefficients that did not turn out to be

statistically different from zero at the 1% significance level, nor led to any increase in
—2 . . L
the R~ for these models. Therefore, the preferred functional form specification is:

1 1 1
l 4l 1 l 1 [ —
CVN,T = ¢y + Ek (Pkm'i' Ek ekﬂ-'_ Ek (Pkm'f'é , k=05,1, 2, 3.
(N

where C VN 7 1s the critical value estimate at each of 221 significance levels
(I = 0.0001, 0.0002, 0.0005, 0.001 (0.001) 0.01, 0.015 (0.005) 0.990, 0.991 (0.001)
0.999, 0.9995, 0.9998 and 0.9999), N denotes the number of cross sectional units,
and T refers to the number of observations on Ay;; (which is one less than the total
number of available observations). Because all terms in Eq. 7 tend to zero as N — oo
and T — oo, the intercept term (i.e., ¢é) provides an estimate for the asymptotic
critical value of the test statistics.

Table 1 reports response surface regressions for 3 of the 221 significance levels,
namely / = 0.01, 0.05 and 0.10. The coefficient of determination indicates that the fit
of these response surface models is particularly good, being at least 0.997. While we
only report the response surface regressions for a limited range of /, Eq. 7 has been
estimated for all 221 quantiles. Across all quantiles the average R? in the response
surface models is 0.998, with a minimum R? of 0.967 (which occurs in Case III for
[ = 0.0001). As to be expected, the residuals of the estimated response surfaces exhibit
heteroskedasticity. Thus, to assess the robustness of the OLS results we also considered
estimation using the GMM procedure described in MacKinnon (1994) and MacKinnon
(1996). For the purposes of our simulation exercise, this procedure amounts to averag-
ing the critical values across the 25 replications for each combination of 7" and N, and
scaling all the variables in Eq. 7 by the standard error in these replications. Then, the
resulting equation using the re-scaled variables can be estimated by OLS. This GMM
procedure yields very similar results to those obtained when using OLS. Finally, to
obtain P values of the CIPS statistic, we follow MacKinnon (1994) and MacKinnon
(1996) by estimating the regression

—_— /e 2
o=l () =yl + ylCVI + ! (cvl) ol 8)
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where @~ is the inverse of the cumulative standard normal distribution at each of
the 221 quantiles and C'V! is the critical value estimate at the [ quantile, which is the
fitted value from Eq. 7. As in Harvey and Van Dijk (2006), Eq. 8 is estimated by OLS
using seven quantile observations on either side of the desired quantile, so that Eq. 8
is effectively estimated using 15 observations in total.! Approximate P values of the
CIPS test statistic can then be obtained as:

P =& (7 +7{CIPs + 7iCIPS?) ©)

where 7 YirJ = 0, 1, 2 are the OLS parameter estimates from Eq. 8. An Excel spread-
sheet that calculates the P value of any CIPS test statistic for each of the three specifica-
tions is available at http://www2.warwick.ac.uk/ fac/ soc/ economics/ staff/ academic/
Jjeremysmith/research.

The response surface models estimated in Eq. 7 are based on the DGP of Pesaran
(2007), which assumes a normally distributed error term, ¢;;. To consider the effects
of skewness and leptokurtosis (thick tails), critical values are also tabulated when the
error term is distributed as x> with 6 degrees of freedom ( XG) and Student’s ¢ with
10 degrees of freedom (t1¢), although standardised to facilitate the comparison of the
results reported earlier. In 25 different experiments, each with 50,000 replications, our
results for N = 10, 20 and T = 20, 30 indicate that the critical values show a marked
departure compared to those critical values reported for the case in which the errors
have the normal distribution, although the extent of the departure depends upon the
deterministic components included in the test regressions. Case I exhibits the greatest
extent of departure, with the resulting critical values being more negative when the
errors are generated as X62 or t1¢. For instance, when N = 10 and T = 20 the 1% crit-
ical value when the errors are generated as normal was -2.004 as compared to -2.449
(-2.455) for a X62 (Student’s tq) distribution. In Case II there is a smaller difference
in the critical values which under normality (for N = 10, T = 20 and / = 0.01) was
-2.610 compared to -2.854 (-2.866) for a xé (Student’s 1) distribution. Lastly, in Case
I the critical values are very similar irrespective of the error distribution: for N = 10
and T = 20, the 1% critical values under Gaussian, x62 and Student’s to errors are
-3.153,-3.173, and -3.162, respectively. From a practical point of view, these findings
support the inclusion of intercept and trend terms in the testing regressions when the
assumption of Gaussian disturbances appears not to be valid.

Finally, Pesaran (2007) indicates that, in practice, serial correlation can be accounted
for this by including p lags of both Ay;; and Ay,; see Eq. 3. However, neither the
critical values tabulated by Pesaran (2007) nor the ones tabulated in our paper for-
mally allow for the inclusion of these additional terms in the right hand side of the
test regressions. To further our understanding of the effect of inclusion of lags in
Eq. 3 on the tabulated critical values, we perform a limited set of additional Monte
Carlo simulations (once again, assuming that the DGP follows the setup of Eq. 6).
These additional simulations reveal that the presence of lags shifts the distribution of

! For I < 0.004 and [ > 0.996 we use the actual quantile and the 14 observations closest to the desired
quantile, as there will not be seven on either side.
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the CIPS test statistics to the right, but also that this displacement diminishes as T
increases. For example, in Case II and for a given panel of N = 20 individuals and
T = 50, 100 and 200 observations, the 5% critical values with p = 0 lags are -2.202,
-2.203 and -2.204, respectively. With p = 4 lags the corresponding 5% critical values
are -2.074 for T = 50, -2.144 for T = 100, and -2.176 for T = 200 observations,
respectively. However, a more thorough analysis of the sensitivity of the CIPS test to
the inclusion of lags is left for further work.

4 Conclusions

In this paper we estimate response surface models for the critical values of the CIPS
panel unit root test, for the cases in which the test regression includes no intercept
and no trend, intercept only, and intercept and trend. The response surface models,

which are estimated for a total of 221 significance levels, are power functions of

(%) . (+) and their interaction (). Here we report the response surface equations

for 1%, 5% and 10% significance levels. The fit of the 221 response surface models
is good, with all models having an R? in excess of 0.967. Models are then estimated
to enable the calculation of finite sample probability values of the CIPS test, and an
Excel spreadsheet is made available for such purpose.
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